• 欢迎访问中国光电光电子行业网! 主办单位:中国光学光电子行业协会
自由电子激光及其发展情况介绍
发布时间:2012-12-14    来源:网络   阅读次数:1000 分享到:

 自由电子激光器一种利用自由电子的受激辐射,把相对论电子束的能量转换成相干辐射的激光器件。自由电子受激辐射的设想曾于1951年由Motz提出,并在1953年进行过实验,因受当时条件的限制,未能得到证实。1974年斯坦福大学的Madey等人重新提出了恒定横向周期磁场中的场致受激辐射理论,并首次在毫米波段实现了受激辐射;1976年Madey小组第一次实现了激光放大,1977年4月斯坦福大学Deacon等人才研制成第一台自由电子激光振荡器。

  激光是二十世纪最伟大的发明之一,自由电子激光是激光家族的一个新成员。由于它的工作介质是自由电子,因此称为自由电子激光,这种激光的特点是激光波长和脉冲结构可以根据需要进行设计,并且能够在大范围内连续调节,有着重要的应用前景。

  自由电子激光是利用自由电子为工作媒质产生的强相干辐射,它的产生机理不同于原子内束缚电子的受激辐射。自由电子激光的概念是J.Maday于1971年在他的博士论文中首次提出的,并在1976年和他的同事们在斯坦福大学实现了远红外自由电子激光,观察到了10.6μm波长的光放大。自那以后,许多国家都开展了关于自由电子激光的理论与实验研究。

  自由电子激光的基本原理是通过自由电子和辐射的相互作用,电子将能量转送给辐射而使辐射强度增大。

  自由电子激光具有一系列已有激光光源无法替代的优点。例如,频率连续可调,频谱范围广,峰值功率和平均功率大,且可调,相干性好,偏振强,具有ps量级脉冲的时间结构,且时间结构可控,等等。

  自由电子激光的发展背景

  使用电子产生相干辐射,是科技领域长期探讨的课题。从二次世界大战时期发展起来的微波管,如磁控管、速调管、行波管等等,都可以产生相干电磁辐射,并且一直在向短波长、高功率的方向推进。但它们受结构尺寸的限制,很难将波长缩短到光波波段。60年代发明的常规激光基于原子、分子的能级越迁的原理,是相干光源的划时代的发展,它推动了人类的科学研究和生产活动,做出了极为重要的贡献。但它一般说来不便调变波长,而且功率受工作物质发热的限制。同步辐射利用电子作圆周运动而产生连续谱的辐射,但广谱辐射经分光后,单色强度却大受限制,而且是非相干光。同步辐射装置几十年中经历了三代的发展,由于它有广泛的应用,世界上兼用和专用的装置已有70余台,总投资估计逾10亿美元。为了更好地满足应用的要求,它正在向更短脉冲、更好相干性、更高耀度的第四代发展。下面将要介绍的自由电子激光(以后简称FEL),正是具有这些特征的崭新的光源,所以FEL也被称为第四代同步辐射。

  在光波范围工作的FEL多数使用射频电子直线加速器提供电子来源。它的工作原理可简述如下。由加速器产生的高能电子经偏转磁铁注入到极性交替变换的扭摆磁铁中。电子因做扭摆运动而产生电磁辐射(光脉冲),光脉冲经下游及上游两反射镜反射而与以后的电子束团反复发生作用。结果是电子沿运动方向群聚成尺寸小于光波波长的微小的束团。这些微束团将它们的动能转换为光场的能量,使光场振幅增大。这个过程重复多次,直到光强达到饱和。作用后的电子则经下游的偏转磁铁偏转到系统之外。以上是FEL产生过程的比较形象的描述。从物理学角度看,这个过程就是电子对辐射的受激康普顿散射的结果。这里一个最为关键的环节是电子要聚集成许多短于光波波长的束团。因为,只有这样它的辐射才是相干的,而FEL的技术难度,恰恰也正在于此。电子束性能必须十分优越(能量分散小,方向分散小,时间稳定度高……),同时流强尽可能大,才能达到要求,显然,FEL工作波长愈短,技术难度也就愈大。

自由电子激光的原理

  自由电子激光的物理原理是利用通过周期性摆动磁场的高速电子束和光辐射场之间的相互作用,使电子的动能传递给光辐射而使其辐射强度增大。利用这一基本思想而设计的激光器称为自由电子激光器(简称FEL)。如图1所示,一组扭摆磁铁可以沿z轴方向产生周期性变化的磁场.磁场的方向沿Y轴。由加速器提供的高速电子束经偏转磁铁D导入摆动磁场。由于磁场的作用.电子的轨迹将发生偏转而沿着正弦曲线运动,其运动周期与摆动磁场的相同。这些电子在XOZ面内摇摆前进.沿x方向有一加速度。因而将在前进的方向上自发地发射电磁波。辐射的方向在以电子运动方向为中心的一个角度范围内。

  自由电子激光的特点

  激光是二十世纪最伟大的发明之一,自由电子激光是激光家族的一个新成员。由于它的工作介质是自由电子,因此称为自由电子激光,这种激光的特点是激光波长和脉冲结构可以根据需要进行设计,并且能够在大范围内连续调节,有着重要的应用前景。

  自由电子激光是加速器产生的高能自由电子束通过周期性变化的磁场产生的激光输出,这种激光的亮度非常高,通过改变电子能量、磁场周期和强度可以改变激光波长。[JF:Page]

 自由电子激光器一般由电子束注入器(电子加速器)、横向磁场分量沿轴向周期变化的磁场、光学谐振腔等3部分组成,根据工作机理的差别,自由电子激光器大体分为康普顿型和拉曼型,前者注入的电子束能量较高,流强较弱,后者能量较低,流强较强,其光的受激辐射主要靠电荷密度波。

  初步研究表明,自由电子激光具有一系列已有的其他光源无法代替的优点:

  1、工作频率连续可调,其频谱可以从远红外到硬x射线;

  2、峰值功率和平均功率高且可调;

  3、相干性好且高度偏振;

  4、具有Ps脉冲的时间结构,且时间结构可控等。


  自由电子激光的发展

  自1960年世界上第一台激光器诞生以来,随着激光器技术的研究和发展,人们普遍希望普通激光器的功率、效率、和波长调谐范围能有大幅度地提高,但对于普通的激光器来说,简直难于作到,于是科学家们开始探索新的方法,新的途径来提高激光器的性能.早在20世纪50年代初期,就有人提出了自由电子受激辐射的设想。

  1950年,有人用射频直线加速器和摆动器演示了可见波长自发辐射和微波相干辐射.1957年到1964年问,自由电子微波激射器问世,称为"ubitron",在5mm 波长上产生150KW 的峰值功率.同时,人们利用高能电子在轴向磁场中的横向回旋运动产生毫米波,但一直到1974年才首次在毫米波段实现受激辐射。

  1977年,美国斯坦福大学的红外波段实现受激辐射。当时研究此课题时所需的电子加速器等设备相当复杂且价格昂贵。

  1978年,美国海军研究实验室在红外区也取得实验成功。20世纪70年代,自由电子激光研究还不怎么兴旺。当它重新开始升温时,分别通过受激康普顿散射和受激拉曼散射发展。1983年,法国奥赛的电磁辐射应用实验室,首次用储存环中运行的电子束获得激光效应,这台新型的自由电子激光器首次在可见光频段发射光子。

  1984年,美国物理学家在加速器上利用电子束放大一束微波辐射,获得了高功率、高效率、波长宽调谐范围的激光。自由电子激光器潜在高输出功率、高效率特性,使它首先就被考虑用在国防上。

 20世纪80年代,美国里根总统提出了战略防御倡议计划,使自由电子激光器成为美国"星球大战"计划中陆基或天基定向能武器中最有希望的候选者。这就促使了美国自由电子激光器的研究、开发取得了一系列很大的进展。激光技术的研究和开发应用是以军事武器的研究应用为先导,而逐步推广应用于民品开发生产中去的.研究和发展自由电子激光器的领域十分广阔,科学家们在许多领域内进行了大量尝试或试探性的应用研究工作。由于自由电子激光器体积庞大,造价高昂,极大地限制了其使用范围。自由电子激光器能否充分发挥其优异特性而走向实用,最终将取决于器件能否小型化。因此,国际上研究自由电子激光器的热点转向了小型化、实用化、短波长(真空紫外、软x射线)方面。美国LosAlamos实验室于1993年首次实验成功小型化的自由电子激光器(FEL)。它运行在4-6txm波段,输出峰值功率10MW,光阴极电子枪的亮度高达2×10 A/m ·rad ,实现了高质低能(17Mev)电子束产生中红外自由电子激光。整个装置占有较小的空间,从而使FEL向小型化和实际应用迈进了一大步。另一方面,人们在小周期波荡器、虚火花放电装置及虚火花放电、高压电源的改进等几项新技术方面开展的研究都为自由电子激光器走向小型化提供了有利条件。同时,研制波长几毫米以下的微型摆动器以及激光摆动器、适于上述摆动的低能及角度色散电子束源的开发也成为研究的目标.另外,利用切伦科夫辐射和史密斯·帕塞尔辐射的新型自由电子激光器,体积也大大缩小。

  2O世纪9O年代初期,自由电子激光器的平均功率就已达11W.为进一步提高自由电子激光的输出功率和效率并进一步缩短波长,特别是探索更有效的短波长(紫外及x射线)自由电子激光的机理,人们对各种与等离子体有关的"非常规"自由电子激光器进行了研究,并迅速成为自由电子激光研究领域内的热点之一。如等离子体波Wiggler自由电子激光,以等离子体为背景的静磁Wiggler自由电子激光和离子通道激光。

  1994年10月,日本关西学术文化研究都市津田的自由电子激光研究所制成了兆瓦量级的自由电子激光实用装置。这归功于花了二、三十年研究成功的电子直线加速器、微波源和超高真空等基础技术。开发远紫外自由电子激光器需要大电流的贮存环,长寿命的电子枪以及lO Pa的超高真空等技术。以自放大自发辐射为基础的单程自由电子激光器提供了另一种向真空紫外和x射线激光推进的路线,这种自由电子激光器可能提供极强的偏振超脉冲类激光辐射。除了它们的高峰值亮度和高平均亮度外,电子能量的可调谐性使得这种自由电子激光器成为真空紫外和x射线辐射无可匹敌的光源。

  本世纪初,德国汉堡研究人员报告了德国电子同步加速器的真空紫外激光器已产生8O~120nm可调谐,吉瓦级功率,30~100fs脉冲,其峰值亮度比目前第三代同步辐射源高8个数量级。2003年开始进行6nm 自由电子激光器的研究工作。

  人们在成功地建造出真空紫外波段的自放大自发辐射自由电子激光器后,研究人员把目光放在产生0.1nm最小波长的x射线自由电子激光器上。德国汉堡电子对撞中心(DESY)的科学家研制出了相当于1000万倍自然光强度的x射线激光器。这种自由电子激光器达到了理论上的最大功率。在紫外线照射时,其功率比其它光源要强千倍。这台自由电子激光器长约3O米,波长范围在8O到180纳米之间。据俄罗斯"劳动报"报道,西伯利亚科学家成功地制造出一台世界上独一无二的输出功率和频率均可调的自由电子激光器。这台自由电子激光器高达百米,功率可调范围为lO~100千瓦,波长的变化范围为2~30lxm,该激光器的方向性极强,光束射到月球表面时,光斑直径不超过3O厘米。

 自由电子激光的应用

  由于自由电子激光器具有许多一般激光器望尘莫及的优点,所以自由电子激光器问世后不久,科学家们就开始着手于研究它的应用问题.自由电子激光特别适宜于研究光与原子、分子和凝固态物质的相互作用,这类研究涉及到固体表面物理、半导体物理、超导体、凝聚态物理、化学、光谱学、非线性光学、生物学、医学、材料、能源、通信、国防和技术科学等多个方面。原子核工程是自由电子激光器应用最有前途的领域之一,自由电子激光器在此应用上的最大优点是高功率、宽可调光谱范围,以及准连续运转特点。因此,可应用于物质提纯、受控核聚变、铀、钆、硼、锶和钛等元素的同位素分离和等离子体加热等。

  自由电子激光器的高效率、短脉冲及波长可调的优点,在工业上也有广阔的应用前景。例如在半导体工艺中的薄膜沉积、平板印刷术、蚀刻、掺杂质等,自由电子激光器特别适合大批量材料处理,因为它的波长可调谐,器件又可放大到能输出高平均功率。用于材料处理时,要求功率为1~5KW,波长为8~20Van的自由电子激光器。自由电子激光器还可进行各种化学分析与测量,可以生产高纯硅晶体、满足计算机生产的需要.集成电路装配,包括量子处理和光刻可更多地借助短波自由电子激光器。另外,自由电子激光器还用在激光加工、光CVD等方面的材料,制作x射线激光器、激光加速器等。自由电子激光器还用在原子、分子的基础研究上,光化学可依赖工作在紫外到远紫外区的自由电子激光器。自由电子激光的可调谐性和超短脉冲特性,使得探索化学反应过程、生化过程的动态过程成为可能。这对研究物质的结构和性能对生成新物质的研究,将会产生革命性的变革和新的进展也是自由电子激光器应用最丰富的领域,而目前当务之急是研制紧凑、实用的小型自由电子激光器,其主要目的是把价格降到大医院能买得起的水平。对医学研究和治疗而言,这种激光器可在1-101am波段可调,输出功率不超过几百瓦,此种应用一般要求有几瓦平均功率。

  自由电子激光器可以为空间站输送能量,以降低空间站对太阳能电池的依赖性。用于向卫星传输功率时,要求功率为100KW一1MW,波长为0.86tun的自由电子激光器。[JF:Page]

  在军事上,自由电子激光器可以成为强激光武器,是反洲际导弹的激光武器的主要潜在手段之一。自由电子激光器功率虽然强大,但由于其体积庞大,因此目前只适宜安装在地面上,供陆基激光器使用。在毫米波段,自由电子激光器是唯一有效的强相干信号源,在毫米波激光雷达、反隐形军事目标和激光致盲等研究中具有不可替代的重要应用价值。

  自由电子激光发展趋势

  (1)向短波方向发展 由于技术上的困难,目前建成的自由电子激光器主要工作在远红外与红外区。随着技术的不断发展,特别是加速器技术上的进步,FEL将不断向短波(真紫外、软x射线)方向推动。

  (2)提高峰值功率及平均功率 这主要是出于军事目的(比如定向能武器和军事通信)。

 (3)发展小型化专用装置及工业应用 目前,美国、日本等国的许多著名公司都在积极研究经济实用的专用FEL装置。

  (4)提高功率转换效率 目前,FEL的能量转换效率还很低(10%一20% ),因此,无论从科学实验、工业应用还是军事目的,都亟待提高总功率转换效率。最新研究表明,将射出的无用电子束送人减速装置回收其能量,回收率可达95% 。自由电子激光从出现至今刚刚经历了20个年头,尚处于发展的初期阶段,技术还不成熟,但FEL性能上无可比拟的优点,越来越引起科学界、军事界、医学界的高度重视。已成为科学技术领域最活跃的领域之一。

  美国托马斯杰斐逊国家加速器装置TJNAF(Thomas Jefferson National Accelerator Facility),俗称杰斐逊实验室(Jefferson Lab)或JLab。JLab位于美国弗吉尼亚州纽波特纽斯(Newport News),是美国能源部科学局下属的国家实验室。

  JLab的自由电子激光器是一个亚皮秒光源,覆盖范围从250纳米的紫外至14微米中红外可调谐,脉冲能量达300 mJ,重复频率达75 MHz。并非所有的参数都可同时满足,但10 kW的平均功率已在红外被证明。

  JLab的自由电子激光器基于一种称为能量回收型的直线加速器。电子从左下方的源释放,并且在超导直线加速器中加速。从这个直线加速器出现后,电子通过一个在其中心有扭摆磁铁的激光腔。这个扭摆磁铁引起电子振荡,发出光,该光在腔内被捕获,用来诱导电子放射出更多的光。退出光学腔后,电子然后沿着顶部回路回到直线加速器。在这里,它们将自己的大部分能量给到新一批的电子,使该过程高度有效。

 该激光器始于1 kW的自由电子激光器演示计划,1999年8月完成调试,2001年停止使用。1999年10月,2000年2月、7月和10月,2001年2月、6月、8月和10月,作为用户装置运行,为大约30个组提供用户束流约3000小时。

  在准备将升级到10 kW的功率水平前,该激光器达到了两倍于设计水平的2.1 kW的功率输出。2004年7月21日,在6微米的波长取得了10 kW的连续光。2006年10月30日在1.6微米取得14.2 kW的连续光。因为在红外线波段得到如此高的输出功率,波长越短就越困难。因此这是一个很大的成功,取决于极具创新的设计,克服了在达到如此高的功率的过程中遇到的种种困难。由于最初证明原理的光源能力超过既定的传统光源的能力,所以最初的实验产生了100篇论文,登载在重要期刊上。

计划将自由电子激光在紫外线扩展为250纳米。电子的短脉冲还产生几百瓦的宽带太赫兹光,这种光在一个特殊的用户实验室提供。

 JLab自由电子激光器覆盖了从紫外线250纳米至中红外14微米范围,脉冲能量高达300微焦耳,重复率高达75兆赫。并非所有的参数都可以同时满足,但在平均超过10千瓦的功率已在红外得到证明。

  自由电子激光器的改进能够使其在更广的波长范围内运行,即从紫外0.25微米到15 微米,平均功率高到10000瓦,可调性更快。

 增加两个超导直线加速器部件,改进后的装置能量从 40 MeV 提高到160 MeV,束流的平均电流从 5 mA提高到 10 mA,通过采用光学速调管,使引出效率提高2倍。紫外线区,将采用单独的光学腔体和扭摆磁铁。

  2010年8月19日,紫外自由电子激光器获得第一个700纳米的激光波长,并迅速达到了100 W的功率水平。随后,在2010年8月31日,激光波长达到400纳米,当天晚些时候降到363纳米。

  2010年12月9日,紫外自由电子激光器首次成功产生10 eV的光子。运行在基波370纳米的紫外演示自由电子激光器上的孔耦合输出镜将真空紫外谐波光传送到校准的真空紫外二极管。对每10eV微脉冲中5纳米焦耳完全相干光(39光子)进行测量,约占基波能源的0.1%,符合预期。至12月底,波长达到124纳米。

  这项研究奇迹将为许多以前无法进行的研究打开一扇大门。例如,可以用来测定物质的年龄,这些物质存在的时间可能超出了碳元素年代测定法可以测定的年代。放射性碳测定法使科学家能估算很多年龄超过6.2万岁的物质的年代。放射性氪测定法使科学家能测定10万到100万年前的物质,而从自由电子激光器发出的这种10 eV的光可以产生亚稳定的氪原子。另外,这种方法有助于研究海洋环流模式,并且绘制出地下水的运动情况,同时测算极地冰的年代。

   2011年2月28日,自由电子激光器的紫外光从楼上被引到实验室的光传输系统,首次进入用户实验室4。从2011年3月1日起,把真空紫外光送到用户实验室1用于表征和以备未来之用。

 JLab率先开发利用电子束开展核物理研究的超导技术,现在也服务于利用光进行科学研究:生物、医学、化学、环境科学、材料科学、凝聚态物理和纳米技术。

  一项极富挑战的方案已经到位,即将自由电子激光的脉冲缩短到阿秒范围,以满足波长可完全调的器件中的时间前沿和高磁场。升级后的自由电子激光也将包括kW规模的紫外线能力。

免责声明:来源标记为网络的文章其原创性及文中陈述文字和内容未经协会证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺请读者仅作参考并请自行核实相关内容。

回顾武汉三十年筚路蓝缕走出追光路

筚路蓝缕,以启山林,这是老一辈拓荒者在光谷留下的创新创业史。而今,从落后到并跑,再到逐步领先,光谷在光电子信息产业领域独树一帜,更多中国企业开拓进取、敢创会闯,....

07-31

华中科技大学光电学院陈云天教授深耕复杂介质光传输

陈云天带领计算物理光学团队围绕复杂介质光传输的光学基础理论和底层数值算法的研究,在复杂介质光传输领域提出了一系列创新性理论和计算方法,为发展跨尺度光学系统的底层....

04-07
中国光学光电子行业协会版权所有@2025
010-84321456/1457
coema@coema.org.cn
北京市朝阳区酒仙桥路四号中国电科十一所园区